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ABSTRACT
We present a novel approach for approximating objective 
functions in arbitrary deterministic and stochastic multi-
objective blackbox simulations. Usually, simulated-based 
optimization approaches require pre-defined objective func-
tions for optimization techniques in order to find a local or 
global minimum of the specified simulation objectives and 
multi-objective constraints. Due to the increasing complex-
ity of state-of-the-art simulations, such objective functions 
are not always available, leading to so-called blackbox sim-
ulations.

In contrast to existing approaches, we approximate the 
objective functions and design space for deterministic and 
stochastic blackbox simulations, even for convex and con-
cave Pareto fronts, thus enabling optimization for arbitrary 
simulations. Additionally, Pareto gradient information can 
be obtained from our design space approximation. Our ap-
proach gains its efficiency from a novel gradient-based sam-
pling of the parameter space in combination with a density-
based clustering of sampled objective function values, re-
sulting in a B-spline surface approximation of the feasible 
design space.

We have applied our new method to several benchmarks 
and the results show that our approach is able to efficiently 
approximate arbitrary objective functions. Additionally, the 
computed multi-objective solutions in our evaluation studies 
are close to the Pareto front.

Keywords
Objective function approximation; Knowledge discovery in 
simulation; multi-objective optimization; Spline interpola-
tion; Simulation based optimization; Data mining; B-Spline 
surface

1. INTRODUCTION
Traditional simulation-based optimization approaches [17, 

12] usually require pre-defined objective functions which di-
rectly describe the influence of all simulation input parame-
ters on the specified simulation objectives (denoted as model

behavior). An optimization toolset (e.g. [6]) uses these ob-
jective functions (e.g. ordinary differential equations) in or-
der to find a local or global minimum which satisfies given
constraints. As a consequence of the increasing complexity
of state-of-the-art simulations, such objective functions are
not always available. Even more, there are many technical
complex systems whose long-term behavior can not be de-
scribed by a set of equations (e.g. long-term behavior of
autonomous systems in changing environments). This kind
of simulation-based optimization problem is called blackbox
simulation problem because the objective functions are un-
known to both: the simulation engineer and optimization
toolset.

Therefore, the model behavior analysis in these blackbox
simulations and the determination of the valid design space,
is either done manually by simulation experts or by an au-
tomated process. The goal in both approaches is to approx-
imate the behavior of the objective functions in order to in-
terpolate and extrapolate the model behavior. The manual
analysis method is widely used [8], although it yields many
disadvantages because it is based on subjective judgements
from the simulation engineer [21]: the simulation expert usu-
ally takes an educated guess, based on his experience, which
parameters might be influential on the simulation scope and
varies these cleverly in multiple simulation runs in order
to do both: approximate the feasible design and reduce the
process complexity [19]. The resulting simulation results are
later manually analyzed with respect to the given simulation
constraints. This workflow can be partly supported (e.g. vi-
sualization of parameter sets, clustering analysis of results)
by different tools [6, 19, 16] that can be introduced by the
simulation expert. However, state-of-the-art blackbox simu-
lation problems are further dominated by a multi-objective
optimization problem (MOP) in which multiple and con-
flicting criteria have to be satisfied, which usually can not
be determined by manual analysis [9]. Therefore, [8] refers
to this as the error-prone ”trial-and-error approach”.

Consequently, recent approaches avoid a manual analy-
sis and automatically analyze such multi-objective black-
box simulations via a knowledge discovery process which
can compute suitable input configurations for a given sim-
ulation model without the need of an expert guiding this
process. By definition, they incorporate some kind of data
mining process which samples the simulation input param-
eter space with respect to known [19][16] or unknown [21]
objective functions.



Unlike traditional approaches for solving MOP in black-
box simulations, these knowledge discovery processes in sim-
ulations are not limited to a static, pre-determined input
dataset for model behavior and optimization. Instead, the
simulation is used as a generator for new data by a simula-
tion sampling process. This enables a knowledge discovery
process to investigate the simulated model behavior in more
detail and larger bandwidth [21] via its data mining scheme.
This data mining scheme directly determines the efficiency
and quality of the resulting objective function approxima-
tion because it defines the simulation sampling process.

However, state-of-the-art approaches do not support sto-
chastic simulation behavior and are therefore restricted to
deterministic simulations. Nevertheless, sophisticated simu-
lations involve real-world scenarios which incorporate stochas-
tic processes or properties. Approximating objective func-
tions in stochastic simulations is more difficult and com-
plex because the underlying noise of the stochastic process
involves variations in the simulation and consequently in
the data farming process. State-of-the-art studies model
stochastic processes as deterministic ones which leads not
only to inferior approximation of the objective functions but
also to inferior solutions of the multi-objective optimization
toolset as we will show in our evaluation. In this paper, we
present a novel data mining approach which is directly based
on above observations and the idea of knowledge discovery
processes in simulations.

In detail, our approach is able to
• approximate objective functions (resp. the feasible de-

sign space) in arbitrary deterministic and stochastic
blackbox simulations as B-spline surfaces,
• compute a Pareto gradient from the feasible design

space approximation for concave, convex or interrupted
Pareto fronts, which can be used with different opti-
mization strategies,
• compute a Pareto solution from the feasible design

space approximation via a hierarchical multi-agent sys-
tem approach.

Another main advantage of our approach is that our B-
spline surface based feasible design space approximation eval-
uation is computationally very fast and replaces costly simu-
lation evaluations which are usually required. Consequently,
our approach also delivers a performance boost when com-
puting a solution for the given multi-objective optimization
problem. Furthermore, our approach is very generic. It can
be easily incorporated into existing simulation-based opti-
mization approaches which use a knowledge discovery pro-
cess (e.g. [21]). Even more, the computed Pareto solutions
are close to the Pareto front for deterministic and stochastic
simulations. Additionally, of our approach provides opti-
mization strategies. These strategies can be used by state-
of-the-art multi-objective optimization solvers in order to
investigate a larger bandwidth of the simulated model be-
havior.

Our presented approach is immensely important for simu-
lation applications because simulation technology in general
bases its core competence on the usage of simulation results.
Our work is designed to extract as much valuable informa-
tion as possible from a simulation system and its results,
thus, increasing the usefulness of sophisticated simulations.

2. RELATED WORK
Approximating objective functions in simulation-based op-

timization scenarios has attracted increasing interest in the
last decade. Mostly, such approximations are implemented
as a sophisticated data mining approach within a complex
knowledge discovery (KD) process.

The research can be classified into two groups: KD ap-
proaches aiming at single or multi-objective optimization
problems. All presented KD approaches have in common,
that they only support deterministic simulations. Current
KD approaches for single-objective optimization problems
reduce the optimization problem, e.g. to a single function
f which updates the simulation state x with parameter set
θ via xk+1 = f(xk, θ) [16]. This approach reduces the com-
plexity of the optimization process by finding a suitable
set of points θ in which a pre-defined simulation state is
achieved. Likewise, other approaches, such as [18], neglected
multi-objective simulation properties. The approach applied
a linear regression to all input parameters xi, ...xn for a spe-
cific simulation objective state y. This results in a linear
model which was used to describe the input configuration
space. This model was further used in a clustering approach
in order to find the most influencing parameters. The above
studies can not be applied to multi-objective based simu-
lations in which the simulation model is governed by a set
of (possible) contradicting functions because they do not
concern such structures within the simulation. Similar ap-
proaches, are either restricted to a small number of simula-
tion input parameters due their quadratic runtime [2] or are
highly depending on the simulation expert supervising the
KD process [19].

In summary, all above mentioned studies focused on build-
ing passive models between simulation input and objective-
related simulation output while minimizing the simulation
parameter scope or by focusing on single-objective linear
simulation models in deterministic simulations. These pas-
sive models describe the simulation without enabling inter-
polation or extrapolation of the simulated model behavior
for simulation-based optimization purposes. They deliver
coarse granularity parameter relationship information which
can not be used to approximate the feasible design space nor
to compute a Pareto gradient information (e.g. gradient in-
formation of the analyzed data with respect to the Pareto
front), especially for stochastic simulations.

In contrast to the above studies, [21] introduced a KD pro-
cess which builds an active model between simulation input
and simulation output. It is able to uncover hidden rela-
tionships between simulation input and unknown objective
functions. It approximates the feasible design space which is
suitable for solving multi-objective optimization problems.
Other KD approaches based on multi-objective simulations
[25, 11, 15, 5] focussed on extracting additional information
from pre-determined concave Pareto sets or analzying these
sets within the simulation. Consequently, they can not be
used to approximate the feasible design space nor to com-
pute a Pareto solution itself. Concluding, all above studies
are restricted to deterministic simulations which leads to
several disadvantages as stated before.



Figure 1: Our approach introduces an efficient objective

function approximation within a knowledge discovery process

via novel B-spline surface representations.

3. OUR APPROACH
In this work, we present our gradient based density spline

surface (GDS) algorithm (see Figure 1). GDS is able to ap-
proximate arbitrary unknown objective functions in deter-
ministic and stochastic blackbox simulations, for convex and
concave as well as interrupted Pareto fronts. GDS consists
of three main concepts:
• B-spline surface representation of the relationship space

(see Section 3.1),
• density based clustering of objective function samples

which determines the noise behavior of the stochastic
simulation (see Section 3.2),
• gradient based sampling of the parameter space which

reduces the required amount of samples (see Section
3.3).

The result of GDS is an efficient approximation of the
objective functions as a set of B-spline surfaces which can
be used in various simulation based optimization scenar-
ios, such as complex multi-objective optimization problems.
This efficient approximation is computationally very inex-
pensive compared to usually very costly simulation evalua-
tions. It can be further effectively utilized in optimizaton
toolsets. We present the application in our multi-agent sys-
tem optimization approach as a use-case study (see Section
3.4).

3.1 Relationship Definition
We assume that every relationship between a parameter

C = c0, ..., ck with parameter space k and objective value
O = o0, ..., ok with objective space k can be formally repre-
sented as a continuous function f : C, T 7→ O = f(c, t) 7→ oO
which maps the parameter space to a given simulation objec-
tive O with its objective function space at a given time step
t ∈ T of the simulation. It would be possible to perfectly
determine the behavior of f with respect to C by brute-force
sampling the whole parameter space k with s ≥ k samples.
However, in real world applications k can be arbitrary large
or continuous and the simulation evaluation computation-
ally very expensive. Therefore, a brute-force sampling of
the parameter space is infeasible. Consequently, it is neces-
sary to reduce the amount of needed samples: s� k.

Overall, the relationship constitutes a large three- dimen-
sional cartesian space R3 (spanned by C, O and T ), which
we denote as relationship space (see Figure 2).

The general idea of cubic splines is to represent a function
by a different cubic function on each interval between data
points. For n data points, the spline S(x) is the function

S(x) =

 F1(x), x0 ≤ x ≤ x1

Fi(x), xi−1 ≤ x ≤ xi
Fn(x), xn−1 ≤ x ≤ xn

(1)

where each Fi is a cubic function.
The most general cubic function has the form

Fi(x) = ai + bix+ cix
2 + dix

3 (2)

In sophisticated simulations, the same parameter configura-
tion will contribute to different objective values at different
time steps in the simulation (e.g. a fuel state/configuration
in a car simulation which changes over time). Because of
configurations like this, we prefer to define a spline of the
objective function for each simulation time step individu-
ally. This results in a list of splines: Sto(C), ..., Stn(C) =
Ot0 , ..., Otn for n simulation time steps with:

Sti(C) = Oti (3)

where

ti : simulation time
C : parameter space
O : objective values of the corresponding objective

function

We use these splines to formulate a cubic B-spline surface:

C(u) =

n∑
i=0

piNi,3(u), 0 ≤ u ≤ 1 (4)

s(u, v) =

m∑
i=0

n∑
j=0

PijNi,3(u)Nj,3(v), 0 ≤ u, v ≤ 1 (5)

where Pij(i = 0, 1, ...,m; j = 0, 1, ..., n) are the control
points of the surface which are determined by
Sto(C), ..., Stn(C) = Ot0 , ..., Otn via a uniform coverage of
the splines. u, v are the knot vectors in the direction of u or
v and Ni,3(u), Nj,3(v) is the B-spline basis (see Figure 2).

This B-spline approximation replaces the unknown objec-
tive function f : C, T 7→ O = f(c, t) 7→ oO = s(c, t) 7→ oO
and is efficiently used to define the required gradient infor-
mation (see Section 3.4) for optimization purposes.



Control point, obtained via 
density clustering

B-Spline surface approximation of
objective function

Unknown objective
function

Simulation time T

Parameter space C

Objective space O 𝑠 𝑢, 𝑣 = 

𝑖=0

𝑚

 

𝑗=0

𝑛

𝑃𝑖𝑗𝑁𝑖,3 𝑢 𝑁𝑗,3 𝑣 0 ≤ 𝑢, 𝑣 ≤ 1

Figure 2: B-Spline surface representation of the three-

dimensional space constructed by simulation input parameter

C, simulation time T and objective function space O.

3.2 Density Splines
In order to enable a precise B-spline surface approxima-

tion of the relationship space, the splines which define s(u, v)
must be very close to the unknown objective function. How-
ever, as stated above, stochastic simulations are governed by
diverse noise behavior which makes it hard to approximate
these unknown objective function. Therefore, we define ev-
ery spline sampling point (c, o) via a density clustering from
n simulation samples.This density clustering detects noise
outliers and therefore enables our splines to approximate
the unknown objective function more precisely.

In order to incorporate this density clustering for the un-
known noise distribution of the objective function, we extend
the general spline definition (see Equation 1). Every spline
is defined with a triple, consisting of the cubic function Fi,
variance of the computed density cluster θ and certainty of
measurement p.

In detail, every Fi is constructed with the centre point of
the most dense cluster of every simulation sample set per
sampling configuration of the simulation. In order to incor-
porate the simulation noise behavior, every centre point is
associated with the variance θ of the corresponding cluster.
Our spline definition will interpolate some of the objective
values due to the gradient-based sampling of the parame-
ter space (see Section 3.3) because we sample only a small
subset of the parameter space. This means that, by defi-
nition, some approximated objective values are more likely
precise (based on simulation samples) than others (based on
the spline interpolation). Therefore, p indicates whether or
not the resulting approximated objective value is interpo-
lated resp. close (in parameter space) to a drawn simulation
sample.

Therefore, for n sampling points, the spline Sti(c) is the
function:

Sti(c) =

 (F1(c),Θ(ψ), p(c, θ)), c0 ≤ c ≤ c1
(Fi(c),Θ(ψ), p(c, θ)), ci−1 ≤ c ≤ ci
(Fn(c),Θ(ψ), p(c, θ)), cn−1 ≤ c ≤ cn

(6)

where

Θ(ψ) : variance 1
k−1
·
k∑
i=0

(oi − ō)2

p(c, θ) : certainty of measurement{
1, if c ∈ θ
1− |c−cj |

k
, otherwise

Ω : Dbscan core cluster of ψ
ψ : n samples of c {(c, oi), ..., (c, on)} with c ∈ θ
θ : sampling configurations
Fi(x) : cubic function based on θ: ai + bix+ cix

2 + dix
3

cj : closest previous sample point ∈ θ to c

The sampled objective values are clustered with the Db-
scan (density-based spatial clustering of applications with
noise) data clustering algorithm [14] (see Figure 3). Db-
scan has several advantages with respect to other clustering
approaches (such as [7, 3, 13]) because
• it does not require a specification on the expected clus-

ter amount,
• it can find arbitarily shaped clusters,
• it has a notion of noise which makes it robust to out-

liers.
This density clustering is important because it enables

a more accurate approximation of the unknown objective
function via its detection of noise outliers. Therefore, just
averaging ψ is insufficient. Even more, the computed Db-
scan clusters can be used to retrieve the standard deviation
and variance of the measurement. We further utilize this in-
formation in our optimization process in order to investigate
arbitrary multi-objective problems from different optimiza-
tion perspectives (see Section 3.4).

Figure 3: Illustration of the Dbscan algorithm: A data

point is inside a dense region (core point, x), on the edge of

the region (boundary point, y) or in a spare region (noise

point, z). The example is given for at least six neighbours.

Adapted from [14].



Parameter space C

O
bj
ec
ti
ve

sp
ac
e
O

Unknown objective function

Noise behavior

Approximated noise behavior

Noise outliers

Core points

Centre point

Figure 4: Approximating an unknown objective function

with our density spline: Noise outliers are detected and the

cluster centre point is used to construct the spline. Sub-

sequently, the variance Θ of the clustering is propagated

through the spline.

Parameter space C

O
bj

ec
ti

ve
sp

ac
e

O

Unknown objective function
Intermediate spline approximation

Spline uncertainty

Current sampling points

Next sampling point choices
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mates the unknown objective function within a certain error

degree. The spline uncertainty p is propagated through the

spline.

3.3 Gradient-based Sampling
The main idea of our gradient-based simulation data sam-

pling is to minimize the amount of samples s (see Section
3.1) which are required approximate the original behavior of
f . In order to do so, we iteratively approximate the unknown
objective function f with our spline definition for a certain
simulation time t. This spline is iteratively updated with
more sampled data until the spline approximates f within a
specified error degree.

In order to minimize the amount of required samples, we
utilize a property of spline-based interpolation. When in-
terpolating with splines, the spline can change drastically
when updated with new sample points at interpolated gra-
dient minima and maxima. This is due to the fact that
splines ensure that the first and second derivative of the
spline will match at the knot points. Therefore, it is desir-
able to determine the spline gradient while approximating
the unknown objective function in order to find large spline
gradient changes. These gradient changes are used to draw
a new sample from the parameter space which will more
likely change the adjacent spline knots and therefore reduce
the amount of required samples due to the aforementioned
inherent behavior of spline interpolation (see Algorithms 1,2
and Figure 5). After successfully approximating the un-

known objective function, we combine the variances of all
clusters for each spline in order gain an accurate approxi-
mation for the noise distribution of the relationships. Given
two clusters, C1 and C2, with their respective mean and
variance of their largest cluster, X̄1, X̄2 and S1

2, S1
2 with

n1, n2 observations, we compute the combined variance (see
Equation 7). We iteratively apply this formula on all clus-
ters of each spline and retrieve the overall variance of the
spline approximation.

Algorithm 1 Objective function approximation via density
splines splineApprox(amount of samples n, parameter C with
space k, spline error threshold ε, simulation time t)

D = c0, c k
2
, ck ∈ C, sampling configurations

F = simulation results of D with n samples
K = Dbscan clusters of F
S = spline based on D,K
R = amount of remaining samples: k− 3
E = empty list of rejections
while R > 0 and E < εrejections do

d = gradientConfiguration(S,D)
D += d

O = empty list of simulation results
for n samples do
O += simulation result of d at t

end for
ospline = S(d)
T = largest Dbscan cluster of O
osim = centre of T
oΘ = variance of T
op = 1
if | osim - ospline | < εdeviation then
E += d

end if
S = rebuild spline based on D,O
R = R - 1

end while
return S

Algorithm 2 Sampling of the parameter space based on gradi-
ent information: gradientConfiguration(current spline definition
S, sampled configuration D)

c = return configuration
t = maximum threshold: 0
for d1,d2,∈ D do
∇d1 = K̇(d1)

∇d2 = K̇(d2)
if |∇d1 −∇d2| > t then

c = d1+d2
2

t = |∇d1 −∇d2 |
end if

end for
return c

Sc
2 =

n1S1
2 + n2S2

2 + n1(X̄1 − X̄c)2 + n2(X̄2 − X̄c)2

n1 + n2

=
n1[S1

2 + (X̄1 − X̄c)2] + n2[S2
2 + (X̄2 − X̄c)2]

n1 + n2

(7)
where

Xc
2 =

n1X̄1 + n2X̄2

n1 + n2
(8)



Figure 6: Pareto optimal solutions of multi-objective dominate every other possible solution: Concave (a), convex (b) or

interrupted Pareto fronts (c) can occur. Our approach efficiently approximates all possible frontiers.

3.4 Multi-Objective Optimization
Today, simulation models are dominated by a multi- ob-

jective optimization problem (MOP) because many real world
problems involve decisions based on multiple and conflicting
criteria [9, 21]. The goal of multi-objective optimization is
to determine best trade-off solutions (so-called Pareto solu-
tions) among these criteria. These multi-objective optimiza-
tion problems can be found in many situations, for example,
in product design where several criteria must be simultane-
ously satisfied [4, 23, 24]. We define MOP according to [9,
21]: Given a subset X of Rn and p functions fj : X ⇒ R for
j = 1, 2, ..., p, MOP is defined as:

(MOP ) max
x∈X

F (x) = (f1(x), f2(x), ..., fp(x)) (9)

where F : X ⇒ Rp is the objective function vector. We
assume that X is of the form X = {x = (x1, x2, ..., xn) ∈
Rn : ai ≤ xi ≤ bi, i = 1, 2, ..., n}, where ai and bi are the
lower and upper bound of the ith component of variable
x, respectively. When the objective functions conflict with
each other, no single solution can simultaneously minimize
all scalar objective functions fj(x), j = 1, ..., p. In these
scenarios, the goal of MOP is to identify a subset of the
Pareto optimal points (P∗) which is able to represent the
Pareto front or to compute a single trade-off solution x ∈ P∗
(see Figure 6) [21]. The definition of Pareto optimality can
be provided by using Pareto dominance relation [1]:
• Let xu, xv ∈ X be two decision vectors. F (xu) dom-

inates F (xv) (denoted F (xu) ≺ F (xv)) if and only if
fi(xu) ≤ fi(xv) ∀i ∈ {1, 2, ..., p} and fj(xu) < fj(xv)
∃j ∈ {1, 2, ..., p}
• A point x∗ ∈ X is globally Pareto optimal if and only

if there is no x ∈ X such that F (x) ≺ F (x∗). Then,
F (x∗) is called globally efficient. The image of the set
of globally efficient points is called the Pareto front.
In general, computational methods cannot guarantee
global Pareto optimality [10], but at best local Pareto
optimality that is defined as:
• A point x∗ ∈ X is locally Pareto optimal if and only if

there exists an open neighborhood of x∗, B(X∗), such
that there is no x ∈ B(x∗) ∩ X satisfying F (x) ≺
F (x∗). F (x∗) is then called locally efficient. The im-
age of the set of locally efficient points is called the
local Pareto front.

In general, identifying the set of all Pareto optimality
points is not a tractable problem and mostly impossible, par-
ticularly when the knowledge on the structure of the problem
is very minimal or not available [9].

Within simulation-based multi-objective optimization prob-
lems, engineers are interested in several different optimal so-
lutions, e.g. which are reliable in many scenarios or which
maximize the objective function for certain aspects. There-
fore, our approach enables a Pareto solution of a multi-
objective optimization problem with three different opti-
mization strategies which determine different feasible design
spaces while maintaining Pareto efficiency:
• Compliance strategy: Determination of the parame-

ter space which maximizes or minimizes the objective
function.
• Reliability strategy: Determination of the parameter

space which maximizes the sampling probability.
• Closeness strategy: Determination of the parameter

space which minimizes the clustering variance.
Due to our relationship definition, we can substitute the

unknown objective functions fj(x), j = 1, ..., p from Equa-
tion 9 with our B-spline surface approximation:

(MOP ) max
x∈X

F (x) = (f1(x), f2(x), ..., fp(x))

⇔
(MOP ) max

c,t∈C,T
F (c, t) = (s1(c, t), s2(c, t), ..., sp(c, t))

(10)

Our strategies determines a different feasible design space
within above definition, namely a sub-set
{{ci, ..., cj}, ..., {cn, ..., cm}} = CStrategy ⊆ {co, ..., ck} = Ck
with 0 ≤ i, i < j, n < m, j < n,m ≤ k. In detail, the
compliance strategy (see Equation 11) maximizes objective
function above a given minimum threshold, m, for all t ∈ T .
In contrast to this, the reliability strategy (see Equation 12)
and closeness strategy (see Equation 13) either maximize
the probability p or minimize the variance Θ of each mea-
surement.



Ccompliance = {ci|∀sq(ci, T ).F ≥ m} (11)

(ci, pi) = (ci,

q=k∑
q=0

t∑
n=0

sq(ci, tn).pi

k
)

Creliability = maxp{(o0, p0), ..., (ok, pk)}

(12)

(ci,Θi) = (ci,

q=k∑
q=0

t∑
n=0

sq(ci, tn).Θi

k
)

Ccloseness = minΘ{(o0,Θ0), ..., (ok,Θk}

(13)

Depending on the strategy, different sub-sets are deter-
mined. Each sub-set is transformed into a feasible design
space ω, depending on the multi-objective constraints of the
specific configuration parameter, namely the set of objective
functions which are influenced by the paramter:

ωi(c, t) =

p=k∑
p=0

Θp · |
o

n
− sp(c, t) ·

o∑q=k
q=0 |tq − sq(c, t)|

| (14)

where

0 ≤ o ≤ 1 : weighting factor
k : the number of related objective functions of i
t : the objective threshold
Θ : the Pareto weighting factor
c : configuration from corresponding strategy

Consequently, our approach is able to find either a qual-
itative solution (see Equation 11), a reliable solution (see
Equation 12) or the most dense solution (see Equation 13)
that can be directly used in order to investigate the multi-
objective problem from different perspectives.

The Pareto gradient ∇ω is defined with unit vectors i, j, k
which span the feasible design space:

∇ωpareto =
∂ω

∂c
i+

∂ω

∂t
j +

∂ω

∂o
k (15)

Figure 7 illustrates this concept for the compliance strategy
in a simple two-dimensional example.
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Figure 7: Approximation of the feasible design space for a

parameter space, simulation objectives (α, β) and given mini-

mum objective value (dotted line): (ca, cb), (cc, cd) determines

the feasible parameter configurations with Θα = Θβ = 1.

4. MAS BASED OPTIMIZATION
We present in this section how our feasible design space

approximation and optimization strategies can be incorpo-
rated into a powerful optimization toolset for finding a Pareto
solution. The optimization system proposed here is based
on a hierarchical multi-agent system (MAS) which aims at
dynamically tuning all given input configuration parame-
ters with respect to the approximated feasible design space.
Such hierarchical MAS have already proven their feasibil-
ity for solving multi-objective optimization problems such
as [6, 20]. Our main idea is that every agent introduces a
part-wise modelling (single and multi-objective constraints
per input parameter) of the problem and its behavior and
communication to other agents is used to solve the global
(multi-objective optimization) problem.

In the following, we describe at first the required MAS in-
frastructure with its modular agent organizations and their
relationships to the feasible design space approximation. Fol-
lowing this, we explain the input and output data as well as
communication structure of the agents. At last, we outline
the adaptation solving process with its negotiation mecha-
nisms and how multi-objective problems can be solved.

Our MAS is composed of several agent organizations. Each
of these organizations aims at optimizing a subset of configu-
ration parameters to one or more simulation objectives, each
one represented by our feasible design space approximation.

These agent organizations are defined per specified sim-
ulation objective and consist of a hierarchy of two agent
types: objective- and negotiation-agents. For each identi-
fied input parameter, one objective-agent is defined. There-
fore, one objective-agent can belong to several agent orga-
nizations. The goal of every defined objective-agent is to
maximize or minimize every attached simulation objective
under Pareto constraints. Several optimization constraints
arise because of the underlying multi-objective optimization
problem. Therefore, a negotiation-agent is defined for every
specified objective. The goal of every negotiation agent is
to manage requests between the objective-agents in order to
satisfy the existing multi-objective constraints between the
objective-agents.

Figure 8 illustrates this agent organization concept with
respect to the overall proposed approach. The input and
output data as well as communication structure of these
agents is described in the next section.

4.1 Parameters, Objectives and Utilities
Given a multi-objective optimization problem, as defined

in Equation 10, we can uniquely identify every adjustable
input configuration parameter C with its valid range. These
configuration parameters and the corresponding B-spline sur-
face based feasible design space approximation constitute
the input of our multi agent system. Additionally, we de-
fine the objectives and utilities of our MAS based control
system.

Each objective-agent strives for maximizing or minimizing
each single-objective optimization problem of its attached
input parameter under multi-objective constraints. There-
fore, each objective-agents computes several objective val-
ues, one for each attached objective.
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Figure 8: Our MAS based optimization approach for a mixed objective problem statement (one multi-objective objective

(β) and two single-objective problems (α, γ) with three input parameters): Each agent organization optimizes the parameter

set for one objective. Negotiation agents handle requests between the objective-agents in order to effectively find the optimal

parameter configuration.

The set of all agent objectives OBJ is defined as follows:

OBJ = {o1...on} → {0, 1}

oi = ω(c, t) (16)

where

ω : corresponding approximated feasible design space

In addition to the objectives to be satisfied, our MAS also
considers the possible utility when changing the given pa-
rameter with respect to the current negotiation state among
the agents. Consequently, we introduce a utility function. It
is used to calculate the difference between current Pareto so-
lution and highest achievable single-objective solution. This
utility value is then later used by the negotiation-agent to
select the most appropriate action.

The set of all utility values is defined as follows:

UTL = {u1...un} → {0, 1}

ui = si(c, t)− ω(c, t) (17)

where
si : corresponding approximated objective function
ωi : corresponding approximated feasible design space

Therefore, the aim of our MAS based optimization system
is to minimize UTL while maximizing OBJ . In other words,
it is to tune all the parameters so all the constraints and
objectives are satisfied.

In order to implement this efficiently in an agent-based
organization, we define requests which are shared between
the agents. These requests are used to lower or higher the
Pareto weight or objective value threshold from Equation 14
if any agent has partially solved one objective:

REQ = {(Θo, to), ...(Θn, tn)}
Θi → {0, 1}
ti → {0, 1}

(18)

where
Θi : corresponding Pareto weight for the associated

objective
mi : corresponding objective value threshold for the

associated objective

4.2 Solving Process Principle
When designing a multi-agent system based optimization

process, the focus is set on agent behaviors and commu-
nications in order to cover the isolated parts of the global
problem which each agent models. Each of our objective-
agent tackles an isolated sub-problem (finding a solution to
its attached single or multi-objective constraints) and emer-
gence is used to solve the overall (multi-objective optimiza-
tion) problem. Therefore, the solving process is distributed
among all objective-agents via negotiation-agents. Conse-
quently, the definition of objective- and negotiation-agent
behaviours is also one of the key aspects of our multi-agent
system and is described hereafter.

• Negotiation-agents monitor the objectives and utilities
of all corresponding objective-agents of their agent or-
ganization and distribute requests between objective-
agents: In the first step, they update (see below) the
attached objective-agents if they have open requests.
In this step, each objective-agent may achieve a new
Pareto solution. In the second step, they collect new
requests from each objective-agent and group them ac-
cording to the multi-objective Pareto satisfaction:

– a) if the objective is completely satisfied, it re-
quests a change for the Pareto weight Θ = 0 for
every other attached objective-agent.

– b) if the objective is partially satisfied, it requests
a change for the objective threshold t in order
of magnitude of current objective satisfaction for
every other attached objective-agent.

At last, the negotiation-agent will forward the requests
(change in objective threshold t or Pareto weight Θ) of
those objective-agents with the highest utility value.
• An objective-agent has a rather simple behaviour: it

computes the objective and utility value for every at-
tached objective for the current Pareto configuration
(objective thresholds, Pareto weights and parameter
configuration) based on our feasible design space ap-
proximation. It updates these values every time a
request for change in Pareto weighting or objective
threshold is received from an negotiation-agent.



5. EVALUATION
We implemented our GDS algorithm in C++. We per-

formed our experiments on a machine with Intel Core i7
quad-core processor with Hyperthreading enabled and 8GB
of memory.

We applied different experiments to measure the perfor-
mance and quality of our approach within several synthetic
benchmark scenarios. These synthetic benchmarks are based
on generated blackbox simulations. Consequently, the ob-
jective functions of the simulation are unknown to all eval-
uated algorithms. The synthetic benchmarks compared the
performance of our GDS algorithm to the approximation ap-
proach from [21] and different clustering (Dbscan, k-means)
and sampling approaches (uniform, random, gradient). In
order to perform this evaluation, we generated two different
types of random objective functions based on polynomials
(fp) and Gaussian functions (fg). Furthermore, we added
noise terms (N) for ten different noise distributions in order
to obtain a stochastic simulation behavior. a, b, c, p, q are
the known scalar values for each corresponding function:

fp(c, t) =

n∑
i=0

ai(c− p)i +

m∑
j=0

bj(t− q)j +N (19)

fg(c, t) =

n∑
i=0

aie
− (c−bi)

2

2c2
i +

m∑
j=0

bje

(t−bj)
2

2c2
j +N (20)

Based on above equations, we have evaluated our ap-
proach with more than 100 different versions of fp and fg
in order to obtain a profound evaluation. These synthetic
benchmarks have been supplemented by a qualitative eval-
uation in order to evaluate whether or not our B-spline sur-
faces can be used for optimization purposes.

We compared the mean approximation error for approx-
imating an unknown polynomial objective function with a
30% noise variance (see Figure 9) and a relationship space of
10,000. Our GDS approach is able to outperform all its com-
petitors up to a factor of four. This performance boost also
increases with the noise variance of the unknown object func-
tion (see Figure 10). This evaluation shows that the non-
clustering approaches perform worse than any clustering-
based approach. Even more, the error variance of our GDS
approach is the smallest, especially when comparing to the
uniform sampling approach without clustering [21] as well
as for the random sampling. Therefore, it can be observed
that a clustering is inevitable in order to approximate the
unknown objective function accurately.

In addition to the mean error evaluation, Figure 10 shows
the mean average approximation error for an increasing noise
behavior of the unknown objective function. It can be clearly
observed that the clustering approaches adapt very well to
an increased noise behavior of the unknown objective func-
tion while all other approaches clearly decrease in their per-
formance.

Furthermore, all non-clustering based approaches need
more samples than the clustering based competitors, when
comparing their performance for the same required approx-
imation error threshold (see Figure 11).

In this context, Figure 12 shows the impact of the sam-
pling amount with respect to the clustering analysis. It
can be observed that only a few samples (≤ 12) per sim-
ulation configuration are required in order to precisely (≤
10%) approximate the given unknown polynomial objective

function. Overall, these evaluations strongly emphasize the
quality improvement of our GDS approach with respect to
its competitors.

Figure 9: Our approach (gradient/Dbscan) outperforms its

competitors: It approximates unknown objective functions

with less error and smaller error variance.

Figure 10: Clustering based approaches do not suffer as

much as non-clustering approach from the objective function

noise behavior.

Figure 11: Our approach (gradient/Dbscan) requires less

samples than its non-clustering based competitors. It further

delivers both, best sampling variance and best approximation

error.

Furthermore, Figure 13 depicts the relationship between
polynomial degree of the objective function and the GDS
mean error of the objective function approximation. Sur-
prisingly, our GDS approach is almost not affected by the
polynomial degree of the objective function. Therefore, even
complex objective functions can be precisely approximated
by our GDS approach.



Figure 12: Only a few samples (≤ 12) are required in order

to efficiently (≤ 10 % error) approximate the noise distribu-

tion of the stochastic simulation.

Figure 13: Effect of the polynomial degree of the un-

known objective function on the mean error of our approach:

The degree has almost no influence as the mean error varies

around 6%.
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Figure 14: Evaluation of our use case study: Our agents

are directly initialized at the single-objective solution and

converge fast to the multi-objective solution.

For deterministic simulations, all presented approaches
perform very similar and obtain approximation errors less
than 1% for arbitrary polynomial objective functions.

Finally, Figure 14 depicts the results from our proposed
MAS-based optimization. For this evaluation, we considered
the following standardized test function for multi-objective
optimization problems from Binh and Korn [26] as a use
case study. We further added noise terms to the functions
in order to obtain a stochastic behavior:

f1(x, y) = 4x2 + 4y2 +N

f2(x, y) = (x− 5)2 + (y − 5)2 +N

s.t.

g1(x, y) = (x− 5)2 + y2 ≤ 25

g2(x, y) = (x− 8)2 + (y + 3)2 ≥ 7.7

(21)

In this use case study, we approximate f1, f2 with our
GDS algorithm and deliver the B-splines as input to our
MAS. Two advantages from our approach can be observed
in this use case study (see Figure 14): First, the initial guess
from the agents is directly the single-objective solution of the
problem, indicating that the approximated feasible design
space is close to the Pareto front. This enables a much faster
optimization process because our MAS requires less negotia-
tions for converging to the correct solution. This reduces the
probability of converging to a local instead of a global min-
imum. Second, already after a few negotiations (in this use
case study: two negotiations) the objective-agents reached
the Pareto front and returned one optimal configuration.

In summary, Table 1 shows a detailed overview of our syn-
thetic benchmarks for both test functions fp and fg. It can
be seen that our GDS algorithm outperforms its competitors
for all given noise distributions in mean error.

6. CONCLUSION
We presented our novel GDS approach for approximat-

ing unknown objective functions in arbitrary deterministic
and stochastic blackbox simulations which are governed by
a multi-objective optimization problem.

Our approach is capable of
• approximating objective functions (resp. the feasible

design space) in arbitrary deterministic and stochastic
blackbox simulations,
• computing Pareto gradient from the feasible design

space approximation for concave, convex or interrupted
Pareto fronts, which can be used with different opti-
mization strategies,
• computing a Pareto solution from the feasible design

space approximation via a hierarchical multi-agent sys-
tem approach.

Even more, our approach can be easily integrated into
existing knowledge discovery processes.

The results from our benchmarks show that our approach
is able to analyze stochastic simulations with large parame-
ter spaces while precisely approximating arbitrary unknown
objective functions. Furthermore, the resulting optimization
solutions are close to the Pareto front. Due to its generality,
our approach is applicable to a wide variety of simulation
domains such as engineering design problems, including lay-
out, design, and process optimization.

In the future, we would like to further evaluate our ap-
proach with standard optimization via simulation problems
using the SimOpt library [22]. Additionally, we would like
to extend our approach with other interpolation approaches:
we could analyze the unknown objective function with sev-
eral approximations (linear, polynomial, spline) in parallel.
This would lead to specific approximation types per simu-
lation objective which could further minimize the approxi-
mation error. Another interesting idea would be to replace
our B-spline surface concept with a high dimensional input



space. Here, we would need to extend our B-spline surface
concept to B-spline volumes. These B-spline volumes could
be directly used for high-dimensional optimization. At last,
we would like to incorporate GPGPU programming into our
data mining approach. We believe that such massively par-
allel implementation can be efficiently used to analyze large-
scale simulations.
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Sampling: Uniform Random Gradient

Clustering: Det. Dbscan K-Means Det. Dbscan K-Means Det. Dbscan K-Means
ēp ēg ēp ēg ēp ēg ēp ēg ēp ēg ēp ēg ēp ēg ēp ēg ēp ēg

Probability mass functions

Binominal, t = 9.0, p = 0.5

P (i|t, p) =
(t
i

)
· pi · (1− p)t−i 15.8 15.9 10.71 10.8 13.86 13.96 16.68 16.71 10.55 10.59 13.42 13.56 15.65 15.72 8.67 8.71 11.34 11.41

Geometric, k = 0.3
p(i|k) = k · (1− k)i 15.66 15.71 10.61 10.67 13.34 13.58 16.54 16.68 10.33 10.4 13.23 13.32 15.52 15.76 8.62 8.69 11.56 11.63

Pascal, k = 3.0, p = 0.5

p(i|k, p) =
(k+i−1

i

)
· pk · (1− p)i 15.6 15.72 10.58 10.61 12.26 13.37 16.27 16.32 10.32 10.4 13.67 13.7 15.65 15.86 8.53 8.6 11.23 11.38

Uniform, a = 0.1, b = 9.0
p(x|a, b) = 1

b−a 15.33 15.56 10.29 10.41 13.44 13.49 16.02 16.1 10.07 10.12 13.72 13.79 15.3 15.53 8.32 8.45 11.67 11.75

Poisson, µ = 0.1

p(x|µ) = µi

i!
e−µ 15.59 15.81 10.54 10.61 12.19 12.55 16.42 16.51 10.3 10.38 13.21 13.32 15.56 15.62 8.56 8.61 11.85 11.93

Probability density functions

Cauchy, a = 5.0, b = 1.0
p(x|a, b) = 1

π·b·[1+( x−a
b

)2]
15.1 15.3 10.44 10.48 12.42 12.56 16.24 16.28 10.25 10.3 13.33 13.42 15.15 15.25 8.47 8.52 11.24 11.4

Chi-squared, n = 3.0

p(x|n) = 1

Γ(n
2

)·2
n
2
· x

n
2
−1 · e−

x
2 15.7 15.9 10.61 10.63 12.11 12.46 16.28 16.43 10.4 10.48 13.56 13.61 15.7 15.78 8.62 8.7 10.87 10.96

Fisher-F, m = 2.0, n = 2.0

p(x|m,n) =
Γ(m+n

2
)

Γ(m
2

)·Γ(n
2

)
·

mx
n

m
2

x·(1+mx
n

)
m+n

2

15.35 15.51 10.84 10.88 12.71 12.83 16.35 16.48 10.73 10.79 13.56 13.6 15.13 15.31 8.75 8.81 11.74 11.83

Normal, µ = 5.0, σ = 2.0

p(x|µ, σ) = 1
σ
√

2π
· e−

(x−µ)2

2σ2 15.56 15.62 10.55 10.63 11.98 12.68 16.4 16.53 10.39 10.44 13.67 13.72 15.52 15.59 8.48 8.54 11.52 11.6

Exponential, λ = 3.5
p(x|λ) = λe−λx 15.65 15.7 10.62 10.67 13.46 13.66 16.36 16.48 10.34 10.41 13.73 13.78 15.6 15.72 8.63 8.78 11.64 11.67

Table 1: Synthetic performance comparison overview: Our GDS approach (grey) outperforms its competitors for all noise distributions (mean
error ē in %)


